Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 713
Filtrar
1.
Chin J Nat Med ; 22(4): 329-340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658096

RESUMO

The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding ß-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Ubiquitina Tiolesterase , Via de Sinalização Wnt , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Camundongos , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Camundongos Endogâmicos BALB C
2.
Pharmacol Rep ; 76(2): 287-306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526651

RESUMO

Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure-activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure-activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.


Assuntos
Antineoplásicos , Ginsenosídeos , Neoplasias , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
3.
Phytomedicine ; 127: 155474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471369

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE: Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD: This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS: Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION: An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.


Assuntos
Ginsenosídeos , Doenças Inflamatórias Intestinais , Panax , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Qualidade de Vida , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inflamação/tratamento farmacológico
4.
Basic Clin Pharmacol Toxicol ; 134(5): 737-749, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477401

RESUMO

Cantharidin (CTD) is a widely used anticancer compound, but its clinical use is mainly limited due to hepatotoxicity. Ginsenoside Rb1 (GRb1) shows potential hepatoprotective effects. Nonetheless, the protective effect and underlying mechanism of GRb1 against CTD-induced hepatotoxicity in mice have not been investigated. This study aims to elucidate the effect and mechanism of GRb1 on CTD-induced hepatotoxicity using network pharmacology and in vivo experiments. Network pharmacology studies have shown that 263 targets were the main mechanisms by which GRb1 alleviates CTD-induced hepatotoxicity. KEGG enrichment analysis revealed that 75 hub genes were mainly enriched in TNF, IL-17 and apoptosis signalling pathways. Molecular docking analysis showed that GRb1 exhibited high affinity with Akt1, Tnf, Il6, Bcl2 and Caspase3. In addition, results from animal studies demonstrated that GRb1 could ameliorate CTD-induced hepatotoxicity by inhibiting protein expression of Caspase-3, Caspase-8, Bcl-2/Bax, GRP78, ATF6, ATF4, CHOP, IRE1α and PERK. This research revealed the mechanism of GRb1 against CTD-induced hepatotoxicity by inhibiting apoptosis and endoplasmic reticulum stress (ERS) and it may provide a scientific rationale for the potential use of GRb1 in the treatment of hepatotoxicity induced by CTD.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ginsenosídeos , Camundongos , Animais , Cantaridina/toxicidade , Endorribonucleases , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Serina-Treonina Quinases , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 111-117, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322531

RESUMO

Objective: To evaluate the inhibitory effect of ginsenoside Rg3 combined with 5-fluorouracil (5-FU) on tumor angiogenesis and tumor growth in colon cancer in mice. Methods: CT26 mouse model of colon cancer was established and the mice were randomly assigned to the control group, the ginsenoside Rg3 group, the 5-FU group, and the Rg3 combined with 5-FU group. The 5-FU group was injected intraperitoneally at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 10 days. Treatment for the Rg3 group was given at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 21 days via gastric gavage. The dose and the mode of treatment for the Rg3+5-FU combination group were the same as those for the 5-FU and the Rg3 group. The control group was intraperitoneally injected with 0.2 mL/d of normal saline for 10 days. The expression of vascular endothelial growth factor (VEGF) and CD31 and the microvascular density (MVD) of the tumor tissues were examined by immunohistochemistry. The blood flow signals and tumor necrosis were examined by color Doppler flow imaging (CDFI). The quality of life, survival rate, tumor volume, tumor mass, and tumor inhibition rate of the mice were monitored. Results: After 21 days of treatment, the tumor volume and the tumor mass of all treatment groups were significantly decreased compared with those the control group, with the combination treatment group exhibiting the most significant decrease. The tumor inhibition rates of the Rg3 group, the 5-FU group, and the combination group were 29.96%, 68.78%, and 73.42%, respectively. Rg3 treatment alone had inhibitory effect on tumor growth to a certain degree, while 5-FU treatment alone or 5-FU combined with Rg3 had a stronger inhibitory effect on tumor growth. The tumor inhibition rate of the combination group was higher than that of the 5-FU group, but the difference was not statistically significant (P>0.05). Color Doppler ultrasound showed that there were multiple localized and large tumor necrotic areas that were obvious and observable in the Rg3 group and the combination group, and that there were only small tumor necrotic areas in the 5-FU group and the control group. The tumor necrosis rate of the combination group was (55.63±3.12)%, which was significantly higher than those of the other groups (P<0.05). CDFI examination of the blood flow inside of the tumor of the mice showed that the blood flow signals in the combination group were mostly grade 0-Ⅰ, and that the blood flow signals in the control group were the most abundant, being mostly grade Ⅱ-Ⅲ. The abundance of the blood flow signals in the Rg3 and 5-FU groups were between those of the control group and the combination group. Compared with those of the control group, the expression levels of MVD and VEGF in the tumor tissues of the Rg3 group, the 5-FU group, and the combination group were significantly decreased, with the combination group showing the most significant decrease (P<0.05). HE staining results indicated that there was significant tumor necrosis in mice in the control group and that there were more blood vessels. In contrast, in the tumor of the Rg3 group and the 5-FU group, there were fewer blood vessels and necrotic gaps appeared within the tumors. In the combination group, the tumor tissues had the fewest blood vessels and rope-like necrosis was observed. The mice started dying on the 18th day after treatment started, and all the mice in the control group died on the 42nd day. By this time, there were 3, 5, and 7 mice still alive in the Rg3 group, the 5-FU group, and the combination group, respectively, presenting a survival rate of 30%, 50%, and 70%, respectively. All mice in all the groups died on day 60 after treatment started. Conclusion: Ginsenoside Rg3 combined with 5-FU can significantly inhibit tumor angiogenesis and tumor growth of colon cancer in mice and improve the survival and quality of life of tumor-bearing mice.


Assuntos
Neoplasias do Colo , Ginsenosídeos , Camundongos , Animais , Fluoruracila/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , 60489 , Qualidade de Vida , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Necrose/tratamento farmacológico , Linhagem Celular Tumoral
6.
J Oleo Sci ; 73(2): 219-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311411

RESUMO

Ginsenosides Rg3 and Rg5 obtained from Panax (ginseng) have shown significant anticancer activity via the PI3K-Akt signaling pathway. This study evaluated the anticancer and antimetastatic effects of a combination of Rg3 and Rg5 on lung cancer cells. A combination of Rg3 and Rg5 was treated for lung cancer cell line A549 and human lung tumor xenograft mouse model, and anti-metastatic effects on Matrigel plug implantation in mice. The combination of Rg3 and Rg5 showed potent antiproliferative effects on A549 cells with IC50 values of 44.6 and 36.0 µM for Rg3 and Rg5 respectively. The combination of Rg3 and Rg5 (30 µM each) showed 48% cell viability as compared to Rg3 (72% viability) and Rg5 (64% viability) at 30 µM concentrations. The combination of Rg3 and Rg5 induced apoptosis in A549 cells characterized by activation of caspase-9 and caspase-3 and cleavage of PARP, as well as suppression of the autophagic marker LC3A/B. The antitumoral potentials of the combination of Rg3 and Rg5 were ascertained in a lung tumor xenograft mouse model with high efficacy as compared to individual ginsenosides. The metastasislimiting properties of the combination of Rg3 and Rg5 were assessed in Matrigel plug implantation in mice which showed the potent efficacy of the combination as compared to individual ginsenoside. Mechanistically, the combination of Rg3 and Rg5 inhibited the expression of PI3K/Akt/mTOR and EGFR/VEGF signaling pathways in lung cancer cells. Results suggest that the combination of Rg3 and Rg5 suppressed the tumor cell proliferation in lung cancer cells and limited the rate of metastasis which further suggest that the combination has a significant effect as compared to the administration of single ginsenoside.


Assuntos
Ginsenosídeos , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Receptores ErbB/metabolismo , Receptores ErbB/farmacologia
7.
Food Funct ; 15(4): 1825-1839, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315542

RESUMO

Ginsenosides are a class of natural products with hormone-like activity of triterpenoid saponins and have a variety of pharmacological activities such as anti-aging, immune regulation and cognitive improvement. With the great research interest in alternative medicine and natural products, they are gradually becoming research hotspots. Ginsenosides have a four-ring rigid steroid backbone similar to steroid hormones, and a series of experimental studies have shown that they can exhibit hormone-like activity by binding to nuclear receptors or affecting hormone levels, thereby affecting a wide range of inflammatory conditions, cancers, and menopause-related diseases. This review summarizes the mechanisms and potential health effects of ginsenosides exhibiting estrogen-like, glucocorticoid-like and androgen-like activities, providing an important reference for the exploration of safe phytohormone replacement therapy.


Assuntos
Produtos Biológicos , Ginsenosídeos , Panax , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Estrogênios , Receptores Citoplasmáticos e Nucleares , Esteroides
8.
Am J Chin Med ; 52(1): 35-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353635

RESUMO

Asian ginseng, the root of Panax ginseng C.A. Meyer, occupies a prominent position in the list of best-selling natural products in the world. There are two major types of ginseng roots: white ginseng and red ginseng, each with numerous preparations. White ginseng is prepared by air-drying fresh Asian ginseng roots after harvest. Red ginseng is prepared by steaming roots in controlled conditions using fresh or raw Asian ginseng. Red ginseng is commonly used in Asian countries due to its unique chemical profile, different therapeutic efficacy, and increased stability. Compared with the widespread research on white ginseng, the study of red ginseng is relatively limited. In this paper, after a botanical feature description, the structures of different types of constituents in red ginseng are systematically described, including naturally occurring compounds and those resulting from the steam processing. In red ginseng phytochemical studies, the number of published reports on ginsenosides is significantly higher than that for other constituents. Up to now, 57 ginsenosides have been isolated and characterized in red ginseng. The structural transformation pathways during steaming have been summarized. In comparison with white ginseng, red ginseng also contains other constituents, including polyacetylenes, Maillard reaction products, other types of glycosides, lignans, amino acids, fatty acids, and polysaccharides, which have also been presented. Appropriate analytical methods are necessary for differentiating between unprocessed white ginseng and processed red ginseng. Specific marker compounds and chemical profiles have been used to discriminate red ginseng from white ginseng and adulterated commercial products. Additionally, a brief phytochemical profile comparison has been made between white ginseng and black ginseng, and the latter is another type of processed ginseng prepared from white or red ginseng by steaming several times. In conclusion, to ensure the safe and effective use of red ginseng, phytochemical and analytical studies of its constituents are necessary and even crucial.


Assuntos
Terapias Complementares , Ginsenosídeos , Panax , Ginsenosídeos/uso terapêutico , Vapor , Panax/química , Compostos Fitoquímicos
9.
J Ethnopharmacol ; 326: 117944, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38382656

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Mey., one of the most used herbs in the world, shows effective treatment in reproductive injury. Recent studies have proven that the processed product, red ginseng, which is more active than ginseng itself. Therefore, it is speculated that its main functional component, rare ginsenosides (heat-transformed saponin, HTS), may be effective in treating premature ovarian failure (POF), but its efficacy has not yet been experimentally confirmed. AIM OF THE STUDY: To evaluate whether HTS could attenuate cyclophosphamide-induced inflammation and oxidative damage in POF model rats and the human granulosa-like KGN cell line and protect granulosa cell proliferation. MATERIAL AND METHODS: HTS were isolated from ginsenosides and high performance liquid chromatography (HPLC) analysis was used to analyze the HTS components. Cyclophosphamide (CP) was used to establish a POF rat model and KGN cell injury model. Reactive oxygen species (ROS) and antioxidant enzyme production was determined using specific assays, while inflammatory cytokine secretion was measured by enzyme-linked immunosorbent assay (ELISA). The proliferative function of granulosa cells was assessed using high-content screening and immunohistochemistry to determine the Ki67 protein level. Protein expression in ovarian tissues and KGN cells was analyzed by Western blotting, quantitative real-time PCR (qRT-PCR) was used to determine the transcriptional changes in ovarian tissues and KGN cells. RESULTS: In CP-treated POF model rats, HTS significantly decreased malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels, increased glutathione oxidase (GSH) levels, and upregulated Ki67 expression in ovarian granulosa cells. In addition, HTS significantly increased cell survival and Ki67 expression levels in CP-treated cells, and superoxide dismutase (SOD) levels were significantly increased. HTS significantly downregulated IL-6, TNF-α, and interleukin-1ß (IL-1ß) mRNA expression and significantly inhibited nuclear factor kappa-B p65 (NF-κB p65) and p38 mitogen activated protein kinase (p38 MAPK) phosphorylation in POF model rats and KGN cells. Moreover, NF-κB p65 and p38 MAPK levels were significantly increased in ovarian granulosa cells. p65 and p38 protein and gene expression was significantly downregulated. CONCLUSION: HTS ameliorated CP-induced POF and human granulosa cell injury, possibly by inhibiting inflammation and oxidative damage mediated by the p38 MAPK/NF-κB p65 signaling pathway.


Assuntos
Ginsenosídeos , Insuficiência Ovariana Primária , Ratos , Humanos , Animais , Feminino , NF-kappa B/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Antígeno Ki-67/metabolismo , Sistema de Sinalização das MAP Quinases , Inflamação/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Bioorg Chem ; 144: 107131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271824

RESUMO

Ginsenoside 20 (R)-25-methoxy-dammarane-3 ß, twelve ß, 20 triol (AD-1) is a promising new drug for the treatment of prostate cancer, but its bioavailability is low. This study investigated the effects of the main metabolites PD and M6 of AD-1 on prostate cancer cell PC3. The in vitro experimental results showed that the IC50 values of PC3 cells treated with PD and M6 were 65.61 and 11.72, respectively. Both PD and M6 inhibited the migration of PC3 cells, and the cell cycle was blocked in the G1 phase. The apoptosis rates of cells following M6 treatment at concentrations of 7.5, 15, and 30 µM were 13.4 %, 17.5 %, and 41.4 %, respectively, which stimulated the expression of apoptosis protein and significantly increased intracellular ROS levels. In xenograft models, PD and M6 have been reported to significantly inhibit tumor growth. We used a genome-wide mRNA expression profile to study the effects of PD and M6 on gene expression in PC3 cancer cells. PD and M6 induced downregulation of HSP70 subtypes HSPA1A and HSPA1B. RT-PCR confirmed that the significant down-regulation of HSP70 subtype expressions was consistent with the results of Transcriptome analysis. Moreover, M6 significantly downregulated the expression of AR, which was further proved by Western blot analysis. In summary, our research findings provide a scientific basis for interpreting the significant activity of AD-1 in prostate cancer, and for the research and development of PD and M6 as novel HSP70 inhibitors.


Assuntos
Ginsenosídeos , Neoplasias da Próstata , Masculino , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Proliferação de Células , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Ciclo Celular , Apoptose , Linhagem Celular Tumoral
11.
Hum Exp Toxicol ; 43: 9603271241229140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289222

RESUMO

OBJECTIVE: Ginsenoside Rg5 (Rg5) is a minor ginsenoside of ginseng and has a strong anti-tumor potential. This study focused on deciphering the function of Rg5 in non-small cell lung cancer (NSCLC) and investigating its related mechanism. METHODS: After treating human NSCLC cell lines (H1650 and A549) and bronchial epithelial cells (BEAS-2B) with increasing concentration of Rg5, cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay. NSCLC cell proliferation and apoptosis were evaluated by colony formation assay and flow cytometry, respectively. The levels of proteins associated with cell cycle progression, cell apoptosis, and autophagy as well as the key markers in the PI3K/Akt/mTOR pathway were measured using western blot. A xenograft nude mouse model was established to explore the function of Rg5 in vivo. RESULTS: NSCLC cell viability was dose- and time-dependently suppressed after Rg5 treatment. Rg5 restrained NSCLC cell proliferation by inducing G2/M phase arrest via regulation of cell cycle-related genes including p21, cyclin B1, and Cdc2. Additionally, Rg5 promoted caspase-dependent apoptosis in NSCLC cells by regulating the intrinsic mitochondrial signaling pathway. Rg5 induced autophagy via the regulation of autophagy-related proteins. The in vivo experiments revealed the inhibitory impact of Rg5 on xenograft growth. Rg5 also inactivated the PI3K/Akt/mTOR signaling pathway in NSCLC cells and mouse tumors. CONCLUSION: Rg5 induced autophagy and caspase-dependent apoptosis in NSCLC cells by inhibiting the PI3K/Akt/mTOR signaling pathway, suggesting that Rg5 might become a promising and novel anti-tumor agent for the clinical treatment of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ginsenosídeos , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Pulmonares/tratamento farmacológico , Transdução de Sinais , Serina-Treonina Quinases TOR , Autofagia , Apoptose , Modelos Animais de Doenças
12.
J Pharm Biomed Anal ; 240: 115939, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198887

RESUMO

The purpose of this study is to screen a novel Rg2 derivative for anti hemorrhagic shock. Eight Rg2 amino acid ester derivatives were designed and synthesized, and their effects on hypoxia and shock were studied. Among them, the derivative 1 (D1) exhibited excellent anti hypoxia by promoting survival rate of H9c2 cells damaged by hypoxia. D1 improved physiological indicators of the rats in hemorrhagic shock, such as blood pressure, heart rate, lactate, acid-base balance, and alleviate oxidative stress and inflammatory damage. Its latent mechanisms were explored by a method of plasma metabolomics based on UPLC-QTOF-MS. As a result, a total of 16 biomarkers were identified involving 6 metabolic pathways. The results of this study contained that the derivative 1 could be considered as potent drug candidates for anti shock and deserved further research and development.


Assuntos
Ginsenosídeos , Choque Hemorrágico , Ratos , Animais , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Choque Hemorrágico/tratamento farmacológico , Estresse Oxidativo , Aminoácidos , Hipóxia
13.
J Ethnopharmacol ; 325: 117810, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38266948

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Vine Tea (VT, Ampelopsis grossedentata), boasts a venerable tradition in China, with a recorded consumption history exceeding 1200 years. Predominantly utilized by ethnic groups in southwest China, this herbal tea is celebrated for its multifaceted therapeutic attributes. Traditionally, VT has been employed to alleviate heat and remove toxins, exhibit anti-inflammatory properties, soothe sore throats, lower blood pressure, and fortify bones and muscles. In the realm of functional foods derived from plant resources, VT has garnered attention for its potential in crafting anti-fatigue beverages or foods, attributed to its promising efficacy and minimal side effects. Currently, in accordance with the Food Safety Standards set forth by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China, VT serves as a raw material in various beverages. AIM OF THE STUDY: VT has an anti-fatigue or similar effect in folk. However, the underlying molecular mechanisms contributing to VT's anti-fatigue effects remain elusive. This study endeavors to investigate the influence of Vine Tea Aqueous Extract (VTE) on fatigue mitigation and to elucidate its operative mechanisms, with the objective of developing VTE as a functional beverage. MATERIALS AND METHODS: The preparation of VTE involved heat extraction and freeze-drying processes, followed by the identification of its metabolites using UPLC-QTOF-MS to ascertain the chemical composition of VTE. A fatigue model was established using a forced swimming test in mice. Potential molecular targets were identified through network pharmacology, transcriptome analysis, and molecular docking. Furthermore, RT-PCR and Western blot techniques were employed to assess mRNA and protein expressions related to the AMPK and FoxO pathways. RESULTS: VTE significantly prolonged the duration of swimming time in an exhaustive swimming test in a dose-dependent manner, while simultaneously reducing the concentrations of blood lactic acid (LA), lactate dehydrogenase (LDH), serum urea nitrogen (SUN), and creatine kinase (CK). Notably, the performance of the high-dose VTE group surpassed that of the well-recognized ginsenoside. VTE demonstrated a regulatory effect akin to ginsenoside on the AMPK energy metabolism pathway and induced downregulation in the expression of Gadd45α, Cdkn1a, FOXO1, and Fbxo32 genes, suggesting an enhancement in skeletal muscle mass. These findings indicate that VTE can improve energy metabolism and muscle mass concurrently. CONCLUSIONS: VTE exhibits significant anti-fatigue effects, and its mechanism is intricately linked to the modulation of the AMPK and FoxO pathways. Crucially, no caffeine or other addictive substances with known side effects were detected in VTE. Consequently, vine tea shows substantial promise as a natural resource for the development of anti-fatigue beverages within the food industry.


Assuntos
Ampelopsis , Ginsenosídeos , Camundongos , Animais , Ampelopsis/química , Ampelopsis/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ginsenosídeos/uso terapêutico , Simulação de Acoplamento Molecular , Fadiga/tratamento farmacológico , Chá , Músculos
14.
Cell Biol Int ; 48(4): 496-509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225685

RESUMO

Tamoxifen (TAM) resistance poses a significant clinical challenge in human breast cancer and exhibits high heterogeneity among different patients. Rg3, an original ginsenoside known to inhibit tumor growth, has shown potential for enhancing TAM sensitivity in breast cancer cells. However, the specific role and underlying mechanisms of Rg3 in this context remain unclear. Aerobic glycolysis, a metabolic process, has been implicated in chemotherapeutic resistance. In this study, we demonstrate that elevated glycolysis plays a central role in TAM resistance and can be effectively targeted and overcome by Rg3. Mechanistically, we observed upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key mediator of glycolysis, in TAM-resistant MCF-7/TamR and T-47D/TamR cells. Crucially, PFKFB3 is indispensable for the synergistic effect of TAM and Rg3 combination therapy, which suppresses cell proliferation and glycolysis in MCF-7/TamR and T-47D/TamR cells, both in vitro and in vivo. Moreover, overexpression of PFKFB3 in MCF-7 cells mimicked the TAM resistance phenotype. Importantly, combination treatment significantly reduced TAM-resistant MCF-7 cell proliferation in an in vivo model. In conclusion, this study highlights the contribution of Rg3 in enhancing the therapeutic efficacy of TAM in breast cancer, and suggests that targeting TAM-resistant PFKFB3 overexpression may represent a promising strategy to improve the response to combination therapy in breast cancer.


Assuntos
Neoplasias da Mama , Ginsenosídeos , Humanos , Feminino , Tamoxifeno/farmacologia , Neoplasias da Mama/patologia , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células MCF-7 , Glicólise , Regulação Neoplásica da Expressão Gênica
15.
Am J Chin Med ; 52(1): 217-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38291582

RESUMO

Cancer has evolved into a substantial public health concern as the second-leading cause of mortality globally. Radiotherapy and chemotherapy have been the two most widely used cancer therapies in recent years; however, both have drawbacks. Therefore, the focus has shifted to the creation of herbal medicines, the extraction of active ingredients, replacement therapy, and the adverse effects of these medications. Ginsenoside Rh2, which is extracted from ginseng, has been identified in many cancer cells. The immune system of the body is strengthened by ginsenoside Rh2, which can also cause the proliferation, death, and differentiation of tumor cells through various pathways. For instance, it inhibits the expression of the NF-[Formula: see text]B signaling pathway and induces cell apoptosis, affects the expression levels of mitochondrial apoptosis proteins Bcl-2 and Bax, and cooperates with the PD-1 blockade to reactivate T cells to promote an antitumor immune response. Furthermore, ginsenosides Rh2 has the effect of reversing the toxic effect of chemotherapy drugs on normal cells, reducing myocardial damage, and relieving bone marrow function suppression. For clinical applications, it is mainly used as an adjuvant drug for preoperative neoadjuvant chemotherapy, postoperative adjuvant chemotherapy, and rescue treatment of advanced cancer. This paper summarizes the pharmacological action and mechanism of ginsenosides Rh2 in all kinds of cancer and looks forward to its future development and application.


Assuntos
Ginsenosídeos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Apoptose , Proteínas Reguladoras de Apoptose , Transdução de Sinais
16.
J Ethnopharmacol ; 321: 117462, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981117

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the ancient book "Shen Nong's Herbal Classic," Panax ginseng CA Mey was believed to have multiple benefits, including calming nerves, improving cognitive function, and promoting longevity. Ginsenosides are the main active ingredients of ginseng. Ginsenoside RK3 (RK3), a rare ginsenoside extracted from ginseng, displays strong pharmacological potential. However, its effect on neurogenesis remains insufficiently investigated. AIM OF THE STUDY: This study aims to investigate whether RK3 improves learning and memory by promoting neurogenesis, and to explore the mechanism of RK3 action. MATERIALS AND METHODS: The therapeutic effect of RK3 on learning and memory was determined by the Morris water maze (MWM) and novel object recognition test (NORT). The pathogenesis and protective effect of RK3 on primary neurons and animal models were detected by immunofluorescence and western blotting. Protein expression of cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway was detected by western blotting. RESULTS: Our results showed that RK3 treatment significantly improved cognitive function in APPswe/PSEN1dE9 (APP/PS1) mice and C57BL/6 (C57) mice. RK3 promotes neurogenesis and synaptogenesis in the mouse hippocampus. In vitro, RK3 prevents Aß-induced injury in primary cultured neurons and promotes the proliferation of PC12 as well as the expression of synapse-associated proteins. Mechanically, the positve role of RK3 on neurogenesis was combined with the activation of CREB/BDNF pathway. Inhibition of CREB/BDNF pathway attenuated the effect of RK3. CONCLUSION: In conclusion, this study demonstrated that RK3 promotes learning and cognition in APP/PS1 and C57 mice by promoting neurogenesis and synaptogenesis through the CREB/BDNF signaling pathway. Therefore, RK3 is expected to be further developed into a potential drug candidate for the treatment of Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer , Ginsenosídeos , Camundongos , Animais , Doença de Alzheimer/patologia , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Ginsenosídeos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Camundongos Endogâmicos C57BL , Neurogênese , Modelos Animais de Doenças , Hipocampo
17.
Orthop Surg ; 16(2): 462-470, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086608

RESUMO

OBJECTIVE: Osteosarcoma is a primary malignancy originating from mesenchymal tissue characterized by rapid growth, early metastasis and poor prognosis. Ginsenoside Rg5 (G-Rg5) is a minor ginsenoside extracted from Panax ginseng C.A. Meyer which has been discovered to possess anti-tumor properties. The objective of current study was to explore the mechanism of G-Rg5 in the treatment of osteosarcoma by network pharmacology and molecular docking technology. METHODS: Pharmmapper, SwissTargetPrediction and similarity ensemble approach databases were used to obtain the pharmacological targets of G-Rg5. Related genes of osteosarcoma were searched for in the GeneCards, OMIM and DrugBank databases. The targets of G-Rg5 and the related genes of osteosarcoma were intersected to obtain the potential target genes of G-Rg5 in the treatment of osteosarccoma. The STRING database and Cytoscape 3.8.2 software were used to construct the protein-protein interaction (PPI) network, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) platform was used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. AutoDock vina software was used to perform molecular docking between G-Rg5 and hub targets. The hub genes were imported into the Kaplan-Meier Plotter online database for survival analysis. RESULTS: A total of 61 overlapping targets were obtained. The related signaling pathways mainly included PI3K-Akt signaling pathway, Proteoglycans in cancer, Lipid and atherosclerosis and Kaposi sarcoma-associated herpesvirus infection. Six hub targets including PIK3CA, SRC, TP53, MAPK1, EGFR, and VEGFA were obtained through PPI network and targets-pathways network analyses. The results of molecular docking showed that the binding energies were all less than -7 kcal/mol. And the results of survival analysis showed TP53 and VEGFA affect the prognosis of sarcoma patients. CONCLUSION: This study explored the possible mechanism of G-Rg5 in the treatment of osteosarcoma using network pharmacology method, suggesting that G-Rg5 has the characteristics of multi-targets and multi-pathways in the treatment of osteosarcoma, which lays a foundation for the follow-up experimental and clinical researches on the therapeutic effects of G-Rg5 on osteosarcoma.


Assuntos
Neoplasias Ósseas , Medicamentos de Ervas Chinesas , Ginsenosídeos , Osteossarcoma , Humanos , Simulação de Acoplamento Molecular , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico
18.
Mol Med Rep ; 29(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063180

RESUMO

Alzheimer's disease (AD) is the most common type of age­related dementia, and causes progressive memory degradation, neuronal loss and brain atrophy. The pathological hallmarks of AD consist of amyloid­ß (Aß) plaque accumulation and abnormal neurofibrillary tangles. Amyloid fibrils are constructed from Aß peptides, which are recognized to assemble into toxic oligomers and exert cytotoxicity. The fibrillar Aß­protein fragment 25­35 (Aß25­35) induces local inflammation, thereby exacerbating neuronal apoptosis. Notoginsenoside R1 (NGR1), one of the primary bioactive ingredients isolated from Panax notoginseng, exhibits effective anti­inflammatory and anti­oxidative activities. However, NGR1 pharmacotherapies targeting Aß­induced inflammation and cell injury cascade remain to be elucidated. The present study investigated the effect and mechanism of NGR1 in Aß25­35­treated PC12 cells. NGR1 doses between 250 and 1,000 µg/ml significantly increased cell viability suppressed by 20 µM Aß25­35 peptide treatment. Notably, the present study demonstrated that Aß25­35 peptide­induced sphingosine kinase 1 (SphK1) signaling activation was reduced after NGR1 treatment, further inhibiting the downstream NF­κB inflammatory signaling pathway. In addition, administration of SphK1 inhibitor II (SKI­II), a SphK1 inhibitor, also significantly reduced Aß25­35 peptide­induced apoptosis and the ratio of NF­κB p­p65/p65. Furthermore, SphK1 knockdown in PC12 cells using small interfering RNA alleviated Aß­induced cell apoptosis and inflammation, suggesting a pivotal role of SphK1 signaling in the anti­inflammatory effect of NGR1. In summary, NGR1 alleviated inflammation and apoptosis stimulated by Aß25­35 by inhibiting the SphK1/NF­κB signaling pathway and may be a promising agent for future AD treatment.


Assuntos
Doença de Alzheimer , Ginsenosídeos , Animais , Ratos , Doença de Alzheimer/metabolismo , Anti-Inflamatórios/farmacologia , Apoptose , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Inflamação/patologia , NF-kappa B/metabolismo , Células PC12 , Transdução de Sinais , Peptídeos beta-Amiloides/efeitos adversos , Peptídeos beta-Amiloides/farmacologia
19.
Molecules ; 28(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067664

RESUMO

Neurological-related disorders are diseases that affect the body's neurons or peripheral nerve tissue, such as Parkinson's disease (PD) and Alzheimer's disease (AD). The development of neurological disorders can cause serious harm to the quality of life and functioning of the patient. The use of traditional therapeutic agents such as dopamine-promoting drugs, anticholinergic drugs, cholinesterase inhibitors, and NMDA receptor antagonists is often accompanied by a series of side effects such as drug resistance, cardiac arrhythmia, liver function abnormalities, and blurred vision. Therefore, there is an urgent need to find a therapeutic drug with a high safety profile and few side effects. Herbal medicines are rich in active ingredients that are natural macromolecules. Ginsenoside is the main active ingredient of ginseng, which has a variety of pharmacological effects and is considered to have potential value in the treatment of human diseases. Modern pharmacological studies have shown that ginsenosides Rg2 and Rh1 have strong pharmacological activities in the nervous system, with protective effects on nerve cells, improved resistance to neuronal injury, modulation of neural activity, resistance to cerebral ischemia/reperfusion injury, improvement of brain damage after eclampsia hemorrhage, improvement of memory and cognitive deficits, treatment of AD and vascular dementia, alleviation of anxiety, pain, and inhibition of ionic-like behavior. In this article, we searched the pharmacological research literature of Rg2 and Rh1 in the field of neurological diseases, summarized the latest research progress of the two ginsenosides, and reviewed the pharmacological effects and mechanisms of Rg2 and Rh1, which provided a new way of thinking for the research of the active ingredients in ginseng anti-neurological diseases and the development of new drugs.


Assuntos
Ginsenosídeos , Panax , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Qualidade de Vida , Sistema Nervoso
20.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069059

RESUMO

Ginsenoside Rg3 extracted from Panax notoginseng has therapeutic effects on diabetes and heart diseases. However, the underlying mechanism of ginsenoside Rg3 on diabetic cardiomyopathy (DCM) remains unclear. 24-week-old diabetic db/db mice were treated with ginsenoside Rg3 for 12 weeks, then body weight, serum lipids, adiponectin levels, as well as cardiac function and pathological morphology, were measured. The targets of ginsenoside Rg3 and its regulation of the adiponectin pathway were also evaluated on 3T3-L1 or H9c2 cells. Ginsenoside Rg3 directly bound to PPAR-γ, improving adiponectin secretion and promoting adiponectin signaling. Significantly attenuated overweight, hyperglycemia, and hyperlipidemia, as well as alleviated lipid accumulation and dysfunction in adipose, liver, and heart tissues, were observed in the ginsenoside Rg3-treated group. Ginsenoside Rg3 could be a promising drug targeting PPAR-γ to treat diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Ginsenosídeos , Animais , Camundongos , Adiponectina/metabolismo , Diabetes Mellitus/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , PPAR gama/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...